DummyHistory 板


LINE

https://machinelearningmastery.com/what-is-information-entropy/ A Gentle Introduction to Information Entropy 「A foundational concept from information is the quantification of the amount of information in things like events, random variables, and distributions.」 Calculate the Information for an Event Quantifying information is the foundation of the field of information theory. The intuition behind quantifying information is the idea of measuring how much surprise there is in an event. Those events that are rare (low probability) are more surprising and therefore have more information than those events that are common (high probability). Low Probability Event: High Information (surprising). High Probability Event: Low Information (unsurprising). The basic intuition behind information theory is that learning that an unlikely event has occurred is more informative than learning that a likely event has occurred. Rare events are more uncertain or more surprising and require more information to represent them than common events. We can calculate the amount of information there is in an event using the probability of the event. This is called “Shannon information,” “self-information,” or simply the “information,” and can be calculated for a discrete event x as follows: information(x) = -log( p(x) ) Where log() is the base-2 logarithm and p(x) is the probability of the event x. The choice of the base-2 logarithm means that the units of the information measu re is in bits (binary digits). This can be directly interpreted in the informati on processing sense as the number of bits required to represent the event. h(x) = -log( p(x) ) The negative sign ensures that the result is always positive or zero. Information will be zero when the probability of an event is 1.0 or a certainty, e.g. there is no surprise. Calculate the Entropy for a Random Variable We can also quantify how much information there is in a random variable. For example, if we wanted to calculate the information for a random variable X with probability distribution p, this might be written as a function H(); for example: H(X) In effect, calculating the information for a random variable is the same as calculating the information for the probability distribution of the events for the random variable. Calculating the information for a random variable is called “information entropy,” “Shannon entropy,” or simply “entropy“. It is related to the idea of entropy from physics by analogy, in that both are concerned with uncertainty. The intuition for entropy is that it is the average number of bits required to represent or transmit an event drawn from the probability distribution for the random variable. … the Shannon entropy of a distribution is the expected amount of information in an event drawn from that distribution. It gives a lower bound on the number of bits […] needed on average to encode symbols drawn from a distribution P. — Page 74, Deep Learning, 2016. 最後一次回杠精了 你们要继续跳针请便 ----- Sent from JPTT on my iPhone --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 111.235.192.33 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/DummyHistory/M.1695701266.A.F18.html ※ 编辑: innominate (59.124.23.93 台湾), 09/26/2023 12:14:10
1F:推 fw190a: 你分享的资料没错,也没人想推翻信息理论,就这样。 09/26 19:02
2F:推 joh: 从来没人推翻吧,到底在凹甚麽... 09/26 22:30







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:iOS站内搜寻

TOP