作者doom8199 (~口卡口卡 修~)
看板Grad-ProbAsk
标题Re: [理工] [工数]ODE
时间Thu Nov 5 04:53:35 2009
※ 引述《jay0748 (山猪)》之铭言:
: dy 3y+3x^2 y^2
: — = ─────
: dx 2x^3 y-3x
: 不知如何下手
: 麻烦版友帮忙解答 谢谢
---
(2x^3y - 3x)dy = (3y + 3x^2y^2) dx
→ x^3 d(y^2) - 3xdy = 3ydx + y^2 d(x^3)
→ x^6 d(y^2/x^3) = 3 d(xy) ____(1)
(假设)
→ (y^2/x^3)^m d(y^2/x^3) = 3(xy)^n d(xy) ____(2)
(y^2/x^3)^(m+1) 3(xy)^(n+1)
→ _______________ = ___________ + C
m+1 n+1
由 (1) (2) 可知:
┌ 2m - n = 0 → ┌ m = (-6/5)
└ -3m - n = 6 └ n = (-12/5)
即通解为:
(y^2/x^3)^(-1/5) 3(xy)^(-7/5)
________________ = ____________ + C
(-1/5) (-7/5)
---
或是假设积分因子为 I(x,y) = (x^m)(y^n) 带入解出 m、n 也可以
我解出来是 m = n = (-12/5)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.113.141.151
1F:推 jay0748:第二行变第三行有点看不懂 11/05 11:40
x^3 d(y^2)
- 3xdy = 3ydx
+ y^2 d(x^3)
^^^^^^ ^^^^^^^^^^^^
└─→移项 │
移项 ←──┘
→
x^3 d(y^2) - y^2 d(x^3) = 3ydx + 3xdy
^^^^^^^^^^^^^^^^^^^^^^^
vdu - udv
(合并) ___________ using
d(u/v) = _________
v^2
→ x^6 d(y^2/x^3) =
3ydx + 3xdy
^^^^^^^^^^^
(合并) ________ using
d(uv) = vdu + udv
→ x^6 d(y^2/x^3) = 3 d(xy)
※ 编辑: doom8199 来自: 140.113.141.151 (11/05 12:44)
2F:→ iyenn:色码推XD 11/05 14:00
3F:→ ntust661:推 11/05 15:15