Math 板


LINE

※ 引述《cckk3333 (皓月)》之铭言: : 1. Let (M,d) be a metric space and f: M -> M satisfy : d(x,y) <= d(f(x),f(y))<= 2*d(x,y) for all x,y : Show that d(f(x),f(y)) = d(x,y) for all x,y and f is bijection [我将题目的符号 M 改成 K, 然後 K 是 compact metric space.] Proof. First, we show that f is bijective. For 1-1, it is clear. So, it remains to show that f is surjective as follows. If not, i.e., there exists a point p_0 in K such that p_0 in K - f(K). Define p_1 = f(p_0), and p_(n+1) = f(p_n) for n = 1,2,3,... . Since K is compact and d(f(x),f(y)) ≦ 2 d(x,y) for all x, and y, it follows f(K) is compact. So, we have d(p_0, f(K)) = r > 0. Notice that d(p_n, p_(n+k)) ≧ d(p_0, p_k) ≧ r for all n, k. (1) by the hypothesis: d(x,y) ≦ d(f(x),f(y)). (1) implies that {p_n} has no convergent subsequence which is absurd since K is sequentially compact. From above sayings, we have proved that f is bijective. Next, check d(f(x),f(y)) = d(x,y) for all x, and y. Given x and y in K, there exist two convergent sequences {x_n} and {y_n} in K with x_n →x and y_n →y. Since f is onto, we can write f(x'_n) = x_n and f(y'_n) = y_n. Hence, there exists two convergent subsequences {x'_n_j} and {y'_n_j} with x'_n_j → x' and y'_n_j → y',(where n_(j+1) - n_j ≧ 2) since K is sequentially compact. Thus, we obtain x_n_j = f(x'_n_j) and y_n_j = f(y'_n_j). By uniqueness of limit and continuity of f, we get x = f(x') and y = f(y'). Consider d(x,y) = d(f(x'),f(y')) ≧ d(x',y') by d(x,y) ≦ d(f(x),f(y)) for all x, and y, = d(lim x'_n_(j+1), lim y'_n_(j+1)) j→∞ j→∞ = d( lim f^(m) (x'_n_j), lim f^(m) (y'_n_j) ) for some m≧2, j→∞ j→∞ ≧ d( lim f^(2) (x'_n_j), lim f^(2) (y'_n_j)). j→∞ j→∞ [use d(x,y) ≦ d(f(x),f(y)) for all x and y again] = d(f^(2) (x'), f^(2) (y')) by continuity of f^(2) = d(f(x), f(y)). Therefore, d(x,y) = d(f(x),f(y)) for all x and y and the hypothesis: d(x,y) ≦ d(f(x),f(y)) for all x, and y. NOTE. d(x,y) ≦ d(f(x),f(y)) ≦ 2 d(x,y) for all x,y 中的 "2" 改成大於等於 1 的数都可以,其目的在保证 f 为 K 上之连续函数。 -- Good taste, bad taste are fine, but you can't have no taste. -- ※ 编辑: math1209 来自: 140.113.25.169 (01/19 13:06)
1F:推 cckk3333 :不好意思可以问一下怎麽保证f连续吗? 01/19 14:01
2F:推 cckk3333 :sorry 请忽略第一行 01/19 14:15
3F:→ cckk3333 :不好意思可以问一下 x'_n_j+1 跟 x'_n_j 有甚麽直接 01/19 15:02
4F:→ cckk3333 :关系吗? 01/19 15:02
5F:→ math1209 :如果你看得不习惯:命 x'_n_j = X_j. 则 01/19 15:13
6F:→ math1209 :x'_n_(j+1) = X_(j+1) 与 x'_n_j = X_j. 01/19 15:14
7F:→ math1209 :也就是说(对子列来说):x'_n_j+1 是 x'_n_j 下一项. 01/19 15:14
8F:推 cckk3333 :我只是觉得x'n_j只是x_n的preimage而已 01/19 15:16
9F:→ cckk3333 :x'_n_j+1 也同样只是 x_n_j+1的preimage 01/19 15:17
10F:→ cckk3333 :两者乍看之下好像跟f没有关系 01/19 15:17
11F:→ cckk3333 :如有误解请见谅 01/19 15:17
12F:→ math1209 :嗯~d(x,y) = d(f(x),f(y)) 中的证明有误. 01/19 16:26
13F:→ math1209 :我再想想...=.= 01/19 16:27







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:iOS站内搜寻

TOP