作者yueayase (scrya)
看板Math
标题Re: [分析] Apostol上的exercise
时间Thu Jan 20 00:01:00 2011
先感谢先前各位的回答,不过
因为有人放连结(
http://frankmath.cc/plover/Apostol.pdf),
所以我又看到了另一版的解答(1.6):
Proof. Given S≠φ and S ⊆N; we prove that if S contains an integer k;then S
contains the smallest member. We prove it by mathematical induction of second
form as follows. As k = 1; it trivially holds. Assume that as k = 1,2,...,m
holds,consider as k = m + 1 as follows. In order to show it, we consider two
cases.
(1) If there is a member s ∈ S such that s < m+1; then by induction
hypothesis,
we have proved it.
(2) If every s 2 S; s m + 1; then m + 1 is the smallest member.
Hence, by mathematical induction, we complete it.
看起来Apostol只是希望读者去证明 Well-Ordering 和 Mathematical Induction等价?
(我以为他要我从公理开始,去做Well-Ordering的推论)
和原先找到的:
If S contains no smallest element then S is empty because individual elements
of N are finite. But S is nonempty.
Therefore S contains a smallest element
感觉上论点都是和Mathematical Induction有关,不然他如何宣称:
如果S没有最小的成员,则S是空集合
感觉这个问题本身就有点问题,似乎我不必再钻了...
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 111.251.175.57
※ 编辑: yueayase 来自: 111.251.175.57 (01/20 00:02)
1F:推 math1209 :那不是本尊 T.M.Apostol 写的解答. =.= 01/20 00:36
2F:推 smartlwj :是plover写的!! 01/20 00:58
3F:推 math1209 :也不是他写的 XD 01/20 01:53
4F:→ rogerli :那,凶手是谁?膜拜一下。 01/20 02:15
5F:推 PaulErdos :我猜是一楼 01/20 03:12
6F:推 herstein :一楼写的XD 01/20 16:41
7F:推 rogerli :(_._) 膜拜一下一楼。 01/20 18:35
8F:→ WINDHEAD :一楼写的,然後连结是六楼的个人网站XD (爱躲) 01/21 02:05