作者xavier13540 (柊 四千)
看板NTU-Exam
标题[试题] 105-2 夏俊雄 偏微分方程式二 第一次期中考
时间Sun Apr 13 13:45:07 2025
课程名称︰偏微分方程式二
课程性质︰数学系选修
课程教师︰夏俊雄
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2017/04/11
考试时限(分钟):160
试题 :
The gradients appeared in this paper are weak derivatives. You have to write
your calculations and reasonings clearly.
(1) (30 points) Assume U is an open bounded set in $\mathbb R^N$ with $C^1$
boundary ∂U. Suppose that $u \in W^{1, p}(U)$. Then
\[u \in W^{1, p}_0(U)\text{ if and only if }Tu = 0\text{ on }\partial U,\]
where T is the trace operator.
(2) (20 points) State and prove the Gagliardo-Nirenberg-Sobolev inequality for
functions $u \in C^1_0(\mathbb R^N)$. (You expect to obtain an inequality
between the $L^{p^*}$ norm of u and the $L^p$ norm of ▽u. You have to give
a relation to $p^*$ and p by scaling analysis.)
(3) (20 points) Prove the following Morrey's inequality: Assume N < p ≦ ∞.
Then there exists a constant C, dependeing only on p and N such that
\[\|u\|_{C^{0, \gamma}(\mathbb R^N)} \le C\|u\|_{W^{1, p}(\mathbb R^N)}\]
for all $u \in C^1(\mathbb R^N)$, where $\gamma := 1-\frac Np$.
(4) (30 points) Prove the Rellich-Kondrachov Compactness theorem: Assume U is a
bounded open set in $\mathbb R^N$ and ∂U is $C^1$. Suppose that 1 ≦ p < N.
Then
\[W^{1, p}(U) \subset \subset L^q(U)\]
for each $1 \le q < p^*$.
--
第01话 似乎在课堂上听过的样子 第02话 那真是太令人绝望了
第03话 已经没什麽好期望了 第04话 被当、21都是存在的
第05话 怎麽可能会all pass 第06话 这考卷绝对有问题啊
第07话 你能面对真正的分数吗 第08话 我,真是个笨蛋
第09话 这样成绩,教授绝不会让我过的 第10话 再也不依靠考古题
第11话 最後留下的补考 第12话 我最爱的学分
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 36.230.52.204 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTU-Exam/M.1744523110.A.814.html
※ 编辑: xavier13540 (36.230.44.40 台湾), 04/16/2025 18:25:34