作者jenban (点滴)
看板NTUBA99study
标题[OR作业]Assignment 8 (due day: 04/28)
时间Tue Apr 22 12:40:19 2008
2008 Operation Research 2
Assignment 8
Due day:
2008/04/28
Problems:
1) Consider he Markov chain that has the following (one-step)
transition matrix.
0 1 2 3 4
0 ┌ 0 4/5 0 1/5 0 ┐
1 │1/4 0 1/2 1/4 0 │
P= 2 │ 0 1/2 0 1/10 2/5│
3 │ 0 0 0 1 0 │
4 └1/3 0 1/3 1/3 0 ┘
(a) Determine the classes of this Markov chain and, for each
class, determine whether it is recurrent or transient.
(b) For each of the classes identified in part (a), determine
the period of the states in that class.
2) A transition matrix P is said to be doubly stochastic if
the sum over each column equals 1; that is
sum(i=0 to i=M)Pij=1 for all j
If such a chain is irreducible, aperiodic, and consists of M+1
states, show that
πj=1/(M+1) for j=0,1,...,M
(n)
(postscript: Lim{p }=πj)
n->inf ij
注意: 请用A4纸张作答,不用A4作答不予计分,并在作业的最上方标明
「学号」及「姓名」。
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.110.216
※ 编辑: jenban 来自: 140.112.110.216 (04/22 12:48)
※ 编辑: jenban 来自: 140.112.110.216 (04/22 12:55)