Sabermetrics 板


LINE

BP 的有趣文章,不过呼叫版大可能还比记得这些算法快 XD Aim For The Head Quick-n-Dirty Base-Out Expected Runs Matrix by Keith Woolner How many times has this happened to you? You're driving down the street and your spouse or significant other drops a bombshell: "Honey, how many runs are expected to score in the rest of the inning if there are runners on first and third with two outs?" Or you're at a cocktail party, and someone who's had a little too much punch starts arguing in a loud voice" "I'd rather have the bases loaded with one out than runners on second and third with nobody out!" And silly, careless you! You left your copy of "The Hidden Game Of Baseball" at home. You don't even have your Blackberry handy to find Palmer's base-out expected runs matrix on the Internet. And unlike Clay Davenport and James Click, you haven't committed the matrix to memory. What will you do? WHAT... WILL... YOU... DO? Baseball Prospectus to the rescue. Here's a quick and dirty way you can approximate the expected number of runs given the bases that are occupied and the number of outs. We'll use an example to demonstrate--runners on first and third with one out: Method A) Step 1) Count up the "total bases" represented by the runners on base--that is, a runner on third counts for 3 bases, a runner on second counts for 2 bases, and a runner on first counts for 1 base. Runners on first and third are 1 + 3 = 4 total bases. Step 2) Multiply by the number of outs left in the inning. In our example, there's one out, so there are two outs left in the inning. 4 total bases * 2 remaining outs = 8 Step 3) Divide by 10. 8 / 10 = 0.8 Step 4) Add 0.45 if 3 outs remain, 0.25 if 2 outs remain, or 0.10 if 1 out remains. This is approximately the expected number of runs. 0.8 + 0.25 = 1.05 runs This approximation yielded 1.05 runs for 1st & 3rd, 1 out. The actual Hidden Game matrix has 1.088. In fact, this method has only one situation that yields an error of more than 0.1 runs (that situation is 2nd and 3rd, 1 out, which computes as 1.25 runs instead of 1.371 runs given in Hidden Game). The average absolute error across all situations is 0.037 runs. So, to summarize in mathematical notation: Exp_Runs ~= TB * Outs_left/ 10 + {0.10 0.25 0.45}[Outs_left] where {0.10 0.25 0.45}[Outs_left] is intended to be the Outs_left element of the array {0.10 0.25 0.45} Hidden Game table Method A approximation outs 0 1 2 0 1 2 --- 0.454 0.249 0.095 0.450 0.250 0.100 1-- 0.783 0.478 0.209 0.750 0.450 0.200 -2- 1.068 0.699 0.348 1.050 0.650 0.300 12- 1.38 0.888 0.457 1.350 0.850 0.400 --3 1.277 0.897 0.382 1.350 0.850 0.400 1-3 1.639 1.088 0.494 1.650 1.050 0.500 -23 1.946 1.371 0.661 1.950 1.250 0.600 123 2.254 1.546 0.798 2.250 1.450 0.700 Method B) If you're willing to do a little more arithmetic, we can improve the accuracy some more: Step 1) Start again with the "total bases" of the runners on base. Runners on first and third are 1 + 3 = 4 Step 2) Subtract 0.15 for each runner on base from the total. Two runners are on base, so: 4 - 0.15 - 0.15 = 3.7 Step 3) Multiply by the number of outs left in the inning, 3.7 * 2 outs = 7.4 Step 4) and divide by 9 7.4 / 9 = 0.822 5) As before, add 0.45 if 3 outs remain, 0.25 if 2 outs remain, or 0.10 if 1 out remains to get the answer: 0.8222 + 0.25 = 1.072 runs This method gives 1.072 runs vs. 1.088 from the Hidden Game Matrix. We've lowered the absolute error versus the previous method by 58%. On average, this shaves the absolute error by about 10%, and reduced the maximum error for any base-out state from 0.121 to 0.081. The state with the greatest error in this method is bases-loaded, 2 outs, which computes as 0.717 instead of the correct 0.798. To summarize: Exp_Runs ~= (TB - 0.15 * #Runners) * Outs_left / 9 + {0.10 0.25 0.45}[Outs_left] Hidden Game table Method B approximation outs 0 1 2 0 1 2 --- 0.454 0.249 0.095 0.450 0.250 0.100 1-- 0.783 0.478 0.209 0.733 0.439 0.194 -2- 1.068 0.699 0.348 1.067 0.661 0.306 12- 1.38 0.888 0.457 1.400 0.883 0.417 --3 1.277 0.897 0.382 1.350 0.850 0.400 1-3 1.639 1.088 0.494 1.683 1.072 0.511 -23 1.946 1.371 0.661 2.017 1.294 0.622 123 2.254 1.546 0.798 2.300 1.483 0.717 Now, armed with either of the two formulae above, you can be the life of the party and a hero(ine) to your loved ones. And, please, there's no need to send thank-you gifts to me. That look in your eye is reward enough. Keith Woolner is an author of Baseball Prospectus. You can contact Keith by clicking here or click here to see Keith's other articles. --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 219.87.154.10







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BabyMother站内搜寻

TOP