Translation 板


LINE

8.3 局部加权回归 8.3 Locally Weighted Regression 前一节描述的最近邻方法可以被看作在单一的查询点x=xq上逼近目标函数f(x)。局部加权 回归是这种方法的推广。它在环绕xq的局部区域内为目标函数f建立明确的逼近。局部加 权回归使用附近的或距离加权的训练样例来形成这种对f的局部逼近。例如,我们可以使 用线性函数、二次函数、多层神经网路或者其他函数形式在环绕xq的邻域内逼近目标函数 。“局部加权回归”名称中,之所以叫“局部”是因为目标函数的逼近仅仅根据查询点附 近的资料,之所以叫“加权”是因为每一个训练样例的贡献是由它与查询点间的距离加权 的,之所以叫“回归”是因为统计学习界广泛使用这个术语来表示逼近实数值函数的问题 。 The nearest-neighbor method described in the previous chapter can be seen as a method of approximation to the target function f(x) at a single point x = xq. Locally weighted regression is an extension of this method. It establishes explicit approximation to target function f in a local area around xq. Locally weighted regression achieves local approximation to f using neighboring or distance-weighted training examples. For example, we can use linear functions, quadratic functions, multi-layer neural networks, or other types of functions to approximate the target function in the vicinity of xq. Regarding the name of "locally weighted regression," why it is called locally is because that the target function is approximated as to only the data surrounding the query point; it is called "weighted" because the contribution of each training example is weighted by its distance to the query point; it is called "regression" because because this term is widely used in statistician circles to formulate problems about approximation of real-valued functions. 给定一个新的查询实例xq,局部加权回归的一般方法是建立一个逼近f hat,使f hat拟合 环绕xq的邻域内的训练样例。然後用这个逼近来计算f hat (xq)的值,也就是为查询实例 估计的目标值输出。然後f hat的描述被删除,因为对於每一个独立的查询实例都会计算 不同的局部逼近。 For a given new query example xq, the general method of locally weighted ^ regression is to construct a f for approximation and fit the training examples ^ in the neighborhood around xq. Subsequently, compute the value of f using this approximation; that is, estimate an output value for the training example. Then ^ the description of f is removed, because a local approximation for each query example is computed independently. 8.3.1 局部加权线性回归 8.3.1 Locally-Weighted Linear Regression 下面,我们先考虑局部加权回归的一种情况,即使用如下形式的线性函数来逼近xq邻域的 目标函数f: Below, we first consider one situation in locally-weighted regression, which is the use of the following linear function to approximate the neighborhood of xq in target function f: ^ f (x)=w0+w1a1(x)+...+wnan(x) 和前面一样,ai(x)表示实例x的第i个属性值。 回忆第4章中我们讨论的梯度下降方法,在拟合以上形式的线性函数到给定的训练集合时 ,它被用来找到使误差最小化的系数w0 ... wn。在那一章中我们感兴趣的是目标函数的 全域逼近。所以当时我们推导出的权值选择方法是使训练集合D上的误差平方和最小化, 即: E = ....... (8.5) As above, ai(x) denotes the ith attribute value of example x. Remember the gradient descent method we discussed in chapter 4. When fitting linear functions of the above form to a given training set, the method is used to find coefficients w0 to wn that minimize the error. In that chapater, we were interested in the global approximation of the target function. Thus, our weighting method was derived by minimizing the sum of square errors on training set D. E = ....... (8.5) http://tinyurl.com/ntos6ca --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 124.12.213.13 ※ 编辑: JinSha 来自: 124.12.213.13 (11/17 20:27)







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Tech_Job站内搜寻

TOP