作者LPH66 (圬琐)
看板puzzle
标题[中译] Puzzleup 2012 (6) Three Pawns in a Frame
时间Thu Aug 30 00:45:59 2012
题目网址:
http://www.puzzleup.com/2012/?home
http://www.puzzleup.com/2012/puzzle/?247
答题时限: 8月30日7PM-比赛结束(约12月12日)
加分时限: 8月30日7PM-9月4日6:59PM
答对可得基本分100分。答案可上传5次,每改1次答案从基本分扣20分。
另有两种加分: 1. 加分时限内答对。例:第N天答对,可加(6-N)分。
2. 题目越困难,加分越多。例:这题有n%的人答错,答对者加n分。
◆Three Pawns in a Frame
There is a square wire frame with a side length of X units (integer), a
chessboard with a side length of 8 units, and 33 pawns to be placed randomly
on this board.
What is the minimum value for X, if it is possible to place the frame on the
board to cover at least 3 pawns, for every possible placement of the 33 pawns
on the board.
Note: For the frame to cover a pawn, it needs to fully cover the square the
pawn is on.
有一个正方形框架,边长为 X 单位(X 为整数),一个边长为八单位的西洋棋盘,
以及随机在这盘子上放置的 33 个小兵。
求 X 的最小值,使得无论这 33 个小兵在盘上怎麽摆,
都能够将这框架放在棋盘上,使得它框住至少三个小兵。
注意:要使这个框架框住某个小兵,它必须完全包含该小兵所在的方格。
--
虽然没有明说,但这样子的叙述方式我觉得应该这正方框只能贴格线放...
(也就是说没有那种搞怪的斜放法就是了)
这样一来这题似乎没什麽好玩的 (思)
9/5 edit:
新题快出了才看到原题补了个跟我的猜测差不多的 Note...
我也补上去好了 (思
--
'You've sort of made up for it tonight,' said Harry. 'Getting the
sword. Finishing the Horcrux. Saving my life.'
'That makes me sound a lot cooler then I was,' Ron mumbled.
'Stuff like that always sounds cooler then it really was,' said
Harry. 'I've been trying to tell you that for years.'
-- Harry Potter and the Deathly Hollows, P.308
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 180.218.108.125
1F:推 tml:既然规定X是整数,乱放也不影响答案吧...而且33这数字明显故意 08/30 01:49
※ 编辑: LPH66 来自: 180.218.108.125 (09/05 18:48)