作者qqyang (RY)
看板trans_math
标题Re: 一个series的问题
时间Tue Jul 5 13:48:13 2005
※ 引述《beatitude (moth)》之铭言:
: 标题: Re: 一个series的问题
: 时间: Wed Jun 1 22:56:18 2005
:
: ※ 引述《happyhello (冲阿 火箭!!)》之铭言:
: : 不好意思请教一下
: : 因为之前在数学版问不到答案
: : 所以在这里问
: : 这应该也算是微积分的范围吧
: : 谢谢
: : Let a and b be positive numbers and form the series
: : a-b/2+a/3-b/4+a/5-b/6+....
: : (a)Express this series in Σnotation.
:
: ∞ a b
: Σ { ------ - ---- }
: n=1 2n-1 2n
在一般的情况下, 这里已经错了.
如果以 S_n 表示部分和, 那麽你表达的是
lim S_{2n} 而不是 lim S_n
正确的表达(只写出一般项)如下
a_n = [(-1)^{n-1}(a+b)+(a-b)]/2n
:
: ∞ 2na - 2nb + b
: = Σ { ----------------- }
: n=1 2n(2n-1)
:
: ∞ 2(a-b)n + b
: = Σ { ------------- }
: n=1 2n(2n-1)
若仅考虑敛散性, 在本题的条件下, lim S_{2n} 的确与 lim S_n 相同
所以, 用正上方这个式子已经看到, 原级数收敛 <=> a=b
若想进一步分辨是 AC 或是 CC, 那得回到 S_{2n} 及 S_{2n+1} 来观察
经过简单计算, 你将会看到原级数 AC <=> a=b=0
: : (b)For what values of a and b is this series absoultely
: : convengent?Conditionally convergent?
:
: 我只知道 a=b 时收敛
: absolutely or conditionally convergent 我不太会分..
:
: : 希望有人能帮我解答
: : 感激不尽
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.229.143.4
※ 编辑: qqyang 来自: 61.229.143.4 (07/05 13:52)
※ 编辑: qqyang 来自: 61.229.143.4 (07/05 13:58)