作者stokes (stokes)
看板trans_math
标题Re: [积分] 还是一题不定积分
时间Sat Jul 9 22:44:14 2005
※ x^4 + 1
: ∫------------dx
: x^6 + 1
: 引述《Karter (伪Carter)》之铭言:
: 先谢谢了 <(_ _)>
x^4 + 1
I= ∫------------dx
x^6 + 1
let x=tanA
do the integration, you may obtain
(tanA^2 + 1)tanA^2
I=A+∫-------------------dA where tanA^2 means (tanA)^2
tanA^6 + 1
Then let tanA^2=u, du du
dA=---------------=--------------
2tanA secA^2 2u^1/2 (u+1)
(tanA^2 + 1)tanA^2 u^1/2 du du^2/3
Thus,∫-------------------dA=∫-------------------=1/3∫-------------
tanA^6 + 1 2(u^3+1) u^3+1
=1/3arctan(u^2/3)
=1/3arctan(tanA^3)
Now, I=arctan(x)+arctan(x^3)
or we may write it as I=2/3arctan(x)-1/3arctan[x/(x^2-1)]
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.251.241
1F:推 amymayyam:高手.....140.127.179.227 07/09
2F:推 ek0519: 高手..... 61.228.25.202 07/09
3F:推 Karter: 高手中的高手 感恩 <(_ _)> 218.168.194.15 07/10