作者LuisSantos (^______^)
看板trans_math
标题Re: [考古] 台大92C
时间Mon Jul 18 19:26:13 2005
※ 引述《kohana (little flower)》之铭言:
: 1
: (1) 求定积分 ∫ xe^√x dx (请问这题的算式)
: 0
: (2) d cosx 1
: ----∫ ----- dt (想确定一下答案)
: dx 0 1+t^4
: 请大家帮忙 谢谢
(1) 令√x = t , 则 x = t^2 => dx = 2tdt
x = 0 , x = 1 => t = 0 , t = 1
1
所以 ∫ xe^√x dx
0
1
= ∫ (t^2)*(e^(t))*(2t) dt
0
1
= 2∫ (t^3)*(e^(t)) dt
0
|1 1
= 2( (t^3)*(e^(t)) | - ∫ (e^(t))*(3t^2) dt )
|0 0
1
= 2( e - 3∫ (t^2)*(e^(t)) dt )
0
|1 1
= 2( e - 3( (t^2)*(e^(t)) | - ∫ (e^(t))*(2t)dt ))
|0 0
1
= 2( e - 3e + 6∫ (t)*(e^(t)) dt )
0
|1 1
= 2( -2e + 6( (t)*(e^(t)) | - ∫ (e^(t)) dt )
|0 0
|1
= 2( -2e + 6e - 6( e^t | ) )
|0
= 2( 4e - 6(e - 1)) = 2( -2e + 6) = 12 - 4e
(2)
d cosx 1
-----∫ ------- dt
dx 0 1 + t^4
1 d
= ------------ -----(cosx)
1 + (cosx)^4 dx
-sinx
= ------------
1 + (cosx)^4
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.66.173.21