作者LuisSantos (^______^)
看板trans_math
标题Re: [考古] 94长庚考古
时间Sat Aug 20 00:32:15 2005
※ 引述《lccf (~闷声色狼~)》之铭言:
: 以下是这次考完长庚转学考微积分後整理的题型
: 大家考完闲闲没事可以当做消遣算算吧
: 一、 填充题 70% (每题7分)
: 1, ∫ x / [(9-2x-x^2)^(1/2)] dx = _____
: 2, n
: lim sigma (2/n)*[(5+2i/n)^10] = _____
: n-> oo i=1
3, find the area which is inside r =3sinθ, outside r =1+sinθ = _____
r = 3sinΘ
=> 3sinΘ = 1 + sinΘ => sinΘ = 1/2 => Θ = π/6 , 5π/6
r = 1 + sinΘ
所求面积为
5π/6 5π/6
(1/2)*∫ (3sinΘ)^2 dΘ - (1/2)*∫ (1 + sinΘ)^2 dΘ
π/6 π/6
5π/6
= (1/2)*∫ 8(sinΘ)^2 - 2sinΘ - 1 dΘ
π/6
5π/6
= (1/2)*∫ 4 - 4cos2Θ - 2sinΘ - 1 dΘ
π/6
|5π/6
= (1/2)*(3Θ - 2sin2Θ + 2cosΘ) | = π
|π/6
4, 求 x^3+2y^2=3xyz在(1,1,1)此点之切平面方程式 = _____
令 F(x,y,z) = x^3 + 2y^2 - 3xyz = 0 为空间一曲面
δF δF δF |
所求平面的法向量 N = [ ----- , ------ , ----- ]|
δx δy δz |(1,1,1)
|
= [3x^2 - 3yz , 4y - 3xz , -3xy]|
|(1,1,1)
= [0 , 1 , -3]
因此所求切平面为 0*(x-1) + 1*(y-1) -3*(z-1) = 0
=> y - 3z + 2 = 0 , x 属於 R
5, 5x
(d/dx) ∫ (sint)^5 dt = _____
x^5
d 5x
---(∫ (sint)^5 dt) = 5(sin(5x))^5 - 5x^4(sin(x^5))^5
dx x^5
: 6, find the interval of convergence
: ∞
: sigma (-1)^n * {[(-3x)^n] /[ (n+1)^(1/2)]} = _____
: n=0
: 7, 求 f(x)=x-x^2 与x轴 在第一象限内所围面积 绕x=2 之体积 = _____
: 8, 求f=(x^2)*y*z 在(1,1,1)此点之 Maximum directional derivative = _____
:
δf δf δf
gradf(x,y,z) = [ ----- , ----- , ----- ]
δx δy δz
= [ 2xyz , (x^2)*z , (x^2)*y ]
|
gradf(x,y,z)| = [2 , 1 , 1]
|(1,1,1)
所以 f(x,y,z) 在 (1,1,1) 的 Maximum directional derivative 为
| | |
|gradf(x,y,z)| | = |[2 , 1 , 1]| = √(2^2 + 1^2 + 1^2) = √6
| |(1,1,1) |
9, f=x*(y^2)*(z^3) x=(3u^2)+2v y=4u - 2v^3 z=2u^2 – 3v^2
u=1, v=1 find (df/du) = _____
10,求 f(x,y)= x^2 – (5/2)xy +y^2 在 x^2+y^2 <= 1之Maximum = _____
: 二、 计算题 30% (每题10分)
: 1, if (x,y)不等於(0,0)时 f(x,y)= [(x^2)y]/[(x^4 +y^2)]
: (x,y)等於(0,0)时 f(x,y)= 0
: find lim [(x^2)y]/[(x^4 +y^2)]
: (x,y)->(0,0)
2, if |g(x)| <= x^2 g(x) can derivative for all x
prove g’(0) = 0
证明: |g(x)|≦x^2 => -x^2 ≦ g(x) ≦ x^2 ----------(*)
x = 0 代入 (*)
所以 0 ≦ g(0) ≦ 0 => g(0) = 0
-x^2 ≦ g(x) - g(0) ≦ x^2
-x^2 g(x) - g(0) x^2
=> -------- ≦ ------------- ≦ -------
x - 0 x - 0 x - 0
-x^2 g(x) - g(0) x^2
=> lim -------- ≦ lim ------------- ≦ lim --------
x→0 x - 0 x→0 x - 0 x→0 x - 0
-x^2 x^2
=> lim ------ ≦ g'(0) ≦ lim -----
x→0 x x→0 x
=> lim -x ≦ g'(0) ≦ lim x
x→0 x→0
=> 0 ≦ g'(0) ≦ 0
所以 g'(0) = 0
: 3, ∫∫ x^2 + y^2 dxdy =____ R: x^2+y^2 <=2y
: R
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.66.173.21
1F:推 transforman:推推推 114.36.128.200 07/16 16:41